
Lecture 1: basics of lattice QCD 
 
Peter Petreczky 

 
•  Lattice regularization and gauge symmetry :  Wilson gauge action, fermion 

doubling  
 
•  Different fermion formulations 
 
•  Meson correlation function and Wilson loops 

•  Scale setting, continuum limit and lines of constant physics (LCP) 

•  Numerical simulations : path integral, quenched approximation 
 
•  Improved actions and thermodynamics 
 
•  The integral method and equation of state from lattice QCD 
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evolution operator in  
imaginary time 

Finite Temperature QCD and its Lattice Formulation  

Integral over functions  
Lattice  

integral with very large (but finite) 
dimension  ( > 1000000 )  

Costs : 

difficult to study real 
time properties: 
spectral functions,  
transport coefficients 
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Quarks and gluon fields on a lattice 

fermion doubling ! 
16 d.o.f ! 

Uµ(x) ! G

†(x)UµG(x+ µ)
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Wilson fermions 

Discretization errors ~ a g2  , used for study of hadron properties, spectral functions 

chiral symmetry is broken even in the massless 
case ! 

additive mass renormalization 

Wilson Dirac operator is not bounded from below 
 
difficulties in numerical simulations 

Wilson (1975) 
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Staggered fermions 

4-flavor theory 

  

Kogut, Susskid (1975) 

different flavors, spin componets sit in different corners of the Brillouin zone or in         hypercube  
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Chiral fermions on the lattice ? 

We would like the following properties for the lattice Dirac operator:  

Nielsen-Ninomiya no-go theorem : 
conditions one 1-4 cannot be satisfied simultaneously  

Wilson fermion formulation gives up 4) 
Staggered fermion formulation  gives up 3) 

Nielsen, Ninomiya (1981) 
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Ginsparg-Wilson fermions  

Ginsparg, Wilson (1982)  

•  anti-commutation properties are recovered in the continuum limit (a->0) 
•  the r.h.s. of the Ginsparg-Wilson relation is zero for the solutions  

mildest way to break the chiral symmetry on the lattice : physical consequences of 
the chiral symmetry are mantained ( e.g. chiral perturbation theory ) 
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Generalized chiral symmetry and topology  

GW relation  Luescher (1998) 

Luescher (1998) 

Hasenfratz, Laliena, Niedermeyer (1998) 

flavor singlet transformation : 

for flavor non-singlet transformation  no anomaly ! 
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Constructing chiral fermion action I  

Overlap fermions : 

using  it can be shown that  

GW relation with R=1/2 

Neuberger (1998)  
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Constructing chiral fermion action II  

Domain wall fermions : introduce the fictitious 5th dimension of extent         : 

Shamir (1993) 

Extensively used in numerical simulations : (see P. Boyle, 2007 for review) 10 



Hasenfratz, Karsch, PLB 125 (83) 308 
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det M is complex => sign problem det M exp(-S)  
cannot be a probability 

QCD at finite baryon density  
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Meson correlators and Wilson loops  
Meson states are created by quark bilenear operators:   

Fixes the quantum number of of mesons, Γ is one 
Of the Dirac matrices 

Most often one considers point operators x=y and their correlation function: 

decay constant 

Consider static quarks :  

J(x, y; ⌧) =  ̄(⌧, x)�U(x, y) (⌧, y)
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Static meson correlation function functions after integrating out the static quark fields:  

x y 

y x 

0 

τ 

R 

Static quark anti-quark potential 

String tension 

n=2 and larger : hybrid potentials  
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Numerial results on the potentials    

Sommer scale  

Static quark anti-quark potential  Hybrid potentials  
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Scale setting in lattice QCD and continuum limit    

Hadron masses in lattice QCD are dimensionless: m=mphys a 
 
Continuum limit: 
 

Physics does not depend on the details on the regularization, e.g 
dimensionless ratios :  
 
Should be independent of the lattice spacing 

The gauge coupling constant depends on the lattice spacing: 
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Lattice QCD calculations   

Costs : 

Monte-Carlo Methods, importance sampling:  

sign problem 

improved discretization schemes  are needed:   
p4, asqtad, stout, HISQ  

Staggered fermions : we get 4nf flavors to get 1-flavor replace nf by ¼ (rooting trick)  
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Improved gauge action   

where W k,l
µ,ν denotes a symmetrized combination of k × l Wilson loops in the (µ, ν)-

plane of the lattice,

W k,l
µ,ν(x) = 1 −

1

2N

(

Re TrL(k)
x,µL

(l)
x+kµ̂,νL

(k)+
x+lν̂,µL

(l)+
x,ν + (k ↔ l)

)

. (2.2)

Here we have introduced the short hand notation for long links, L(k)
x,µ =

∏k−1
j=0 Ux+jµ̂,µ

and x = (n1, n2, n3, n4) denotes the sites on an asymmetric lattice of size N3
σ × Nτ .

With a suitable choice of the coefficients ak,l it can be achieved that the gener-
alized Wilson actions reproduce the continuum Euclidean Yang-Mills Lagrangian,
L = −1

2Fµ,νFµ,ν , up to some order O(a2n) [1]. The standard one-plaquette Wilson ac-
tion, S(1,1), with a1,1 = 1 and ak,l = 0 for all (k, l) ̸= (1, 1) receives O(a2) corrections
in the naive continuum limit. Expanding the link variables, Ux,µ = exp(igaAµ(x)),
in powers of a one finds

S(1,1)
µ,ν (x) = 1 −

1

N
Re TrUx,µUx+µ̂,νU

+
x+ν̂,µU

+
x,ν

= −
1

2N
g2a4

(

Fµ,νFµ,ν +
1

12
a2Fµ,ν(∂

2
µ + ∂2

ν)Fµ,ν

+O(a4)
)

. (2.3)

By adding an additional Wilson loop to the action one can achieve that corrections
start only at O(a4). In particular we will consider here actions obtained by adding
a planar 6-link and 8-link loop, respectively. The non-vanishing coefficients in these
cases are,

I ≡ (1, 2) : a1,1 =
5

3
, a1,2 = −

1

6

I ≡ (2, 2) : a1,1 =
4

3
, a2,2 = −

1

48
(2.4)

The action S(1,2) is a specific choice of the 6-link improved actions originally proposed
by Symanzik [1]. The action S(2,2) has recently also been discussed in the context
of NRQCD calculations [15, 16]. Its generalization to larger quadratic loops gives a
straightforward procedure to eliminate also higher order cut-off effects. Already in
O(a4) there exist two independent operators of dimension eight, which contribute
to the finite cut-off effects. In general, one thus needs three independent loops of
length six and eight in order to eliminate all cut-off effects proportional to a2 and
a4, respectively. In an action constructed only from quadratic loops the different

4

can be eliminated by adding 
larger loops 
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Improved staggered fermion actions  
Standard staggered action has discretization errors ~ a2  
Eliminate those using higher order difference scheme 

The different staggered which flavors sit in different corners of the Brillouin zone 
Are completely equivalent in the free theory => flavor symmetry 
Not the case in the interacting theory: 
exchange with gluons with momenta ~ π/a can change the quark flavor (taste) as 
it brings it to another corner of the Brillouin zone 

with

sF (p) =
∑

µ

h2
µ(p) + m2 .

A.2 Tree level coefficients for improved rotational symme-

try

An expansion of the free inverse fermion propagator up to order p4 yields

D(0)(p) =
∑

µ

hµ(p)hµ(p) =
∑

µ

Ap2
µA

⎛

⎝A + 2B1p
2
µ + 2B2

∑

ν ̸=µ

p2
ν

⎞

⎠+ O(p6) ,

with coefficients

A = 2c(0)
1,0 + 12c(0)

1,2 + 6c(0)
3,0 ,

B1 = −
1

3
c(0)
1,0 − 2c(0)

1,2 − 9c(0)
3,0 ,

B2 = −8c(0)
1,2 .

Obviously the condition B1 = B2 has to be satisfied to achieve rotational symmetry
up to order p4, which leads to the constraint

c(0)
1,0 + 27 c(0)

3,0 + 6 c(0)
1,2 = 24 c(0)

1,2 .

The expansion shows that setting c(0)
1,2 ≡ 0, i.e. the Naik-action, leads to vanishing

O(p4) coefficients B1 = B2 ≡ 0, which corresponds even to an O(a2) improvement.

A.3 Improved rotational symmetry at O(g2)

The explicite expressions for the O(g2) contributions to the fermion propagator are:

D(0)
µ (p) = −hµ(p) ,

D(2)
µ (p) = −

N2
c − 1

2Nc

h(2)
µ (p) ,

Σµ(p) = Kµ(p) + Lµ(p) ,

20

momentum space we find then

S(0)
F = i

∫

p
ψ̄(p)

{

∑

µ

γµhµ(p) + m

}

ψ(p) ,

S̃(0)
F = i

N2
c − 1

2Nc

∫

p
ψ̄(p)

∑

µ

γµh
(2)
µ (p) ψ(p) ,

S(1)
F = i

∫

p

∫

k
ψ̄(p)

∑

µ

γµŜ
(1)
µ (p, k) ψ(p − k) ,

S(2)
F = −

i

2

∫

p

∫

k1

∫

k2

ψ̄(p)
∑

µ

γµŜ
(2)
µ (p, k1, k2) ψ(p − k1 − k2) ,

where

Ŝ(1)
µ (p, k) =

∑

ρ

Kµ;ρ(p, k) Aρ(k) ,

Ŝ(2)
µ (p, k1, k2) =

∑

ρ,σ

Lµ;ρ,σ(p, k1, k2) Aρ(k1)Aσ(k2) .

Here we use the following definitions also referred to in appendices A.2 - A.4:

hµ(p) = 2 sµ(p)
[

c(0)
1,0 + 2 c(0)

1,2

∑

ν ̸=µ

cν(2p)
]

+ 2 c(0)
3,0sµ(3p) , (A.2)

h(2)
µ (p) = 2 sµ(p)

[

c(2)
1,0 + 2 c(2)

1,2

∑

ν ̸=µ

cν(2p)
]

+ 2 c(2)
3,0sµ(3p) ,

Kµ;ρ(p, k) = c(0)
1,0 Afat

µ;ρ(ω; p, k) + c(0)
3,0 A(3,0)

µ;ρ (p, k) + c(0)
1,2 A(1,2)

µ;ρ (p, k) ,

Lµ;ρ,σ(p, k1, k2) = c(0)
1,0 Bfat

µ;ρ,σ(ω; p, k1, k2) + c(0)
3,0 B(3,0)

µ;ρ,σ(p, k1, k2) + c(0)
1,2 B(1,2)

µ;ρ,σ(p, k1, k2) ,

where

Afat
µ;ρ(ω; p, k) = 2 cµ(p − k/2)

·
[

δµ,ρ −
4ω

1 + 6ω

(

δµ,ρ

∑

ν ̸=µ

s2
ν(k/2) − (1 − δµ,ρ) sµ(k/2)sρ(k/2)

)]

,

Bfat
µ;ρ,σ(ω; p, k1, k2) = 2 sµ(p − k1/2 − k2/2)

·
[

δµ,ρδµ,σ −
4ω

1 + 6ω

(

δµ,ρδµ,σ

∑

ν ̸=µ

s2
ν(k1/2 + k2/2)

+2 (1 − δµ,ρ) δρ,σ sµ(k1/2)sµ(k2/2)cρ(k1/2 + k2/2)

−δµ,ρ (1 − δµ,σ) {sµ(k2/2) − icµ(k2/2)} sσ(k1 + k2/2)

−δµ,σ (1 − δµ,ρ) {sµ(k1/2) + icµ(k1/2)} sσ(k2 + k1/2)

)]

,
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2.1 Improvement of rotational symmetry at tree level
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Figure 1: Dispersion relation E = E(p⃗) with p⃗ = (p, 0, 0) for the standard staggered
fermion action (blue), the Naik-action (green) and the p4-action (red) compared to
the continuum dispersion relation E = p. Solid and dashed lines denote real and
complex poles of the propagator respectively.

The inverse free fermion propagator of the action 2.1 in momentum space takes
the form

∆(0)
F

−1
(p) =

−i
∑

µ γµhµ(p) + m
∑

ρ h2
ρ(p) + m2

=
−i
∑

µ γµhµ(p) + m

D(0)(p) + m2
, (2.6)

where the functions hµ(p) are given in appendix A.1 (Eq. A.2).
In order to obtain a rotational invariant free propagator we should achieve that
D(0)(p) =

∑

µ hµ(p)hµ(p) is a function of p2 only. For the standard one-link prop-
agator of the staggered fermion action this requirement for a rotational invariant
propagator is violated at O(p4). Expanding D(0)(p), i.e. the trigonometric functions
appearing in hµ(p) (see appendix A.1), in orders of p a further constraint to the co-

efficients c(0)
i,j can be determined such that the free propagator is rotational invariant

up to order p4, for details see appendix A.1. The constraint is

c(0)
1,0 + 27 c(0)

3,0 + 6 c(0)
1,2 = 24 c(0)

1,2 . (2.7)

Two simple choices which eliminate the bended or straight three link terms in 2.1,

5

Free quark propagator: 

A Appendix

We give here explicit expressions as well as some technical details of the perturbative
calculations. It is organized as follows: In part A.1 we define the fundamental terms
and functions we refer to in the following parts. Part A.2 and part A.3 contain some
details of the determination of the tree-level and 1-loop coefficients respectively.
In part A.4 we give the explicit results of the 1-loop calculation of the fermionic
contribution to the free energy density.

A.1 General 1-loop results and definitions

For the trigonometric functions we use the short hand notation:

sµ(p) ≡ sin(pµ) ,

cµ(p) ≡ cos(pµ) .

The inverse gluon propagator of the 1×2 action was calculated in [2]. For the
standard plaquette action as for the 1×2 action the propagator can be written as

∆Gµ,ν(k) = DGµ(k)δµ,ν − EGµ,ν(k) + ξ gµ(k)gν(k) ,

DGµ(k) = 4 a1,1

∑

ν

s2
ν(k/2) − 16 a1,2

∑

ν

s2
ν(k/2)

(

2 − s2
ν(k/2) − s2

µ(k/2)
)

,

EGµ,ν(k) = 4 a1,1 sµ(k/2)sν(k/2)

−16 a1,2 sµ(k/2)sν(k/2)
(

2 − s2
ν(k/2) − s2

µ(k/2)
)

,

with a1,1 ≡ 1, a1,2 ≡ 0 for the standard Wilson one-plaquette action and a1,1 ≡ 5/3,
a1,2 ≡ −1/12 for the 1×2 action. In both cases we choose the gauge fixing term
gµ(k) = 2sµ(k/2) and Feynman gauge ξ = 1.

The basis of our 1-loop calculations is an expansion of the fermion action in
powers of the bare coupling g:

SF = S(0)
F + gS(1)

F + g2S(2)
F + g2S̃(0)

F + O(g3) . (A.1)

To achieve that, we expand the exponential representation of the link variables

Uµ(x) = exp(igaAµ(x)), with the gauge fields Aµ ≡ ∑N2
c −1

b=1 Ab
µλ

b and normalization
2Tr λaλb = δab for the group generators λa. The lattice spacing is set to a = 1. In
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with

sF (p) =
∑

µ

h2
µ(p) + m2 .

A.2 Tree level coefficients for improved rotational symme-

try

An expansion of the free inverse fermion propagator up to order p4 yields

D(0)(p) =
∑

µ

hµ(p)hµ(p) =
∑

µ

Ap2
µA

⎛

⎝A + 2B1p
2
µ + 2B2

∑

ν ̸=µ

p2
ν

⎞

⎠+ O(p6) ,

with coefficients

A = 2c(0)
1,0 + 12c(0)

1,2 + 6c(0)
3,0 ,

B1 = −
1

3
c(0)
1,0 − 2c(0)

1,2 − 9c(0)
3,0 ,

B2 = −8c(0)
1,2 .

Obviously the condition B1 = B2 has to be satisfied to achieve rotational symmetry
up to order p4, which leads to the constraint

c(0)
1,0 + 27 c(0)

3,0 + 6 c(0)
1,2 = 24 c(0)

1,2 .

The expansion shows that setting c(0)
1,2 ≡ 0, i.e. the Naik-action, leads to vanishing

O(p4) coefficients B1 = B2 ≡ 0, which corresponds even to an O(a2) improvement.

A.3 Improved rotational symmetry at O(g2)

The explicite expressions for the O(g2) contributions to the fermion propagator are:

D(0)
µ (p) = −hµ(p) ,

D(2)
µ (p) = −

N2
c − 1

2Nc

h(2)
µ (p) ,

Σµ(p) = Kµ(p) + Lµ(p) ,
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with

sF (p) =
∑

µ

h2
µ(p) + m2 .

A.2 Tree level coefficients for improved rotational symme-

try

An expansion of the free inverse fermion propagator up to order p4 yields

D(0)(p) =
∑

µ

hµ(p)hµ(p) =
∑

µ

Ap2
µA

⎛

⎝A + 2B1p
2
µ + 2B2

∑

ν ̸=µ

p2
ν

⎞

⎠+ O(p6) ,

with coefficients

A = 2c(0)
1,0 + 12c(0)

1,2 + 6c(0)
3,0 ,

B1 = −
1

3
c(0)
1,0 − 2c(0)

1,2 − 9c(0)
3,0 ,

B2 = −8c(0)
1,2 .

Obviously the condition B1 = B2 has to be satisfied to achieve rotational symmetry
up to order p4, which leads to the constraint

c(0)
1,0 + 27 c(0)

3,0 + 6 c(0)
1,2 = 24 c(0)

1,2 .

The expansion shows that setting c(0)
1,2 ≡ 0, i.e. the Naik-action, leads to vanishing

O(p4) coefficients B1 = B2 ≡ 0, which corresponds even to an O(a2) improvement.

A.3 Improved rotational symmetry at O(g2)

The explicite expressions for the O(g2) contributions to the fermion propagator are:

D(0)
µ (p) = −hµ(p) ,

D(2)
µ (p) = −

N2
c − 1

2Nc

h(2)
µ (p) ,

Σµ(p) = Kµ(p) + Lµ(p) ,
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with

sF (p) =
∑

µ

h2
µ(p) + m2 .

A.2 Tree level coefficients for improved rotational symme-

try

An expansion of the free inverse fermion propagator up to order p4 yields

D(0)(p) =
∑

µ

hµ(p)hµ(p) =
∑

µ

Ap2
µA

⎛

⎝A + 2B1p
2
µ + 2B2

∑

ν ̸=µ

p2
ν

⎞

⎠+ O(p6) ,

with coefficients

A = 2c(0)
1,0 + 12c(0)

1,2 + 6c(0)
3,0 ,

B1 = −
1

3
c(0)
1,0 − 2c(0)

1,2 − 9c(0)
3,0 ,

B2 = −8c(0)
1,2 .

Obviously the condition B1 = B2 has to be satisfied to achieve rotational symmetry
up to order p4, which leads to the constraint

c(0)
1,0 + 27 c(0)

3,0 + 6 c(0)
1,2 = 24 c(0)

1,2 .

The expansion shows that setting c(0)
1,2 ≡ 0, i.e. the Naik-action, leads to vanishing

O(p4) coefficients B1 = B2 ≡ 0, which corresponds even to an O(a2) improvement.

A.3 Improved rotational symmetry at O(g2)

The explicite expressions for the O(g2) contributions to the fermion propagator are:

D(0)
µ (p) = −hµ(p) ,

D(2)
µ (p) = −

N2
c − 1

2Nc

h(2)
µ (p) ,

Σµ(p) = Kµ(p) + Lµ(p) ,
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Heller, Karsch, Sturm,  
PRD60 (1999) 114502 
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no taste breaking at  

Projection to U(3) => HISQ action  

Naik action:  

p4 action:  

Taste symmetry improvement: 

C1.0 + C3,0 

= Fat (smeared) link:  

U fat
µ (x) =

1

1 + 6ω

{

Uµ(x) + ω
∑

ν ̸=µ

[

Uν(x)Uµ(x + ν̂)U †
ν(x + µ̂)

+U †
ν(x − ν̂)Uµ(x − ν̂)Uν(x + µ̂ − ν̂)

]

}

.

The fat-link improved one-link term, the linear 3-link term and the angular 3-link
term appear with coefficients whose dependence on the gauge coupling we have
parameterized as follows a

ci,j = c(0)
i,j + g2 N2

c − 1

2Nc

c(2)
i,j .

Together with the fat-link-weight ω there is thus a total number of 7 parameters in
the action. In order to reproduce the correct naive continuum limit the coefficients
have to satisfy two constraints

c(0)
1,0 + 3 c(0)

3,0 + 6 c(0)
1,2 = 1/2 , (2.3)

c(2)
1,0 + 3 c(2)

3,0 + 6 c(2)
1,2 = 0 . (2.4)

Our aim is to fix these coefficients such that the rotational symmetry of the fermion
propagator is improved up to one loop order.
In a first step we consider the free fermion propagator. Here we derive further con-
straints for the tree level coefficients c(0)

i,j . In particular we will consider the two
cases where only one or the other of the three link terms contributes. Then the
constraints fix the tree level coefficients to certain values.
In the second step we calculate the self energy contributions to the fermion propaga-
tor. Here the one-loop coefficients c(2)

i,j come into play and can be tuned to improve
also the rotational symmetry in one-loop order.
As gluon part of the action we choose the tree level improved 1×2-action:

SG =
2Nc

g2

[

∑

x,ν>µ

5

3

(

1 −
1

N
Re Tr

µν
(x)
)

+
1

6

⎛

⎝1 −
1

2N
Re Tr

⎛

⎝

µν
(x) +

µν

(x)

⎞

⎠

⎞

⎠

]

. (2.5)

We note that also here the tree-level coefficients 5/3 and 1/6 could be further im-
proved at O(g2). These corrections, however, are higher order corrections for the
analysis of the fermion contributions to thermodynamic observables which we will
present in the following.

aNote that the Nc dependence of the 1-loop coefficients has been factored out here explicitely.
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Figure 1: Dispersion relation E = E(p⃗) with p⃗ = (p, 0, 0) for the standard staggered
fermion action (blue), the Naik-action (green) and the p4-action (red) compared to
the continuum dispersion relation E = p. Solid and dashed lines denote real and
complex poles of the propagator respectively.

The inverse free fermion propagator of the action 2.1 in momentum space takes
the form

∆(0)
F

−1
(p) =

−i
∑

µ γµhµ(p) + m
∑

ρ h2
ρ(p) + m2

=
−i
∑

µ γµhµ(p) + m

D(0)(p) + m2
, (2.6)

where the functions hµ(p) are given in appendix A.1 (Eq. A.2).
In order to obtain a rotational invariant free propagator we should achieve that
D(0)(p) =

∑

µ hµ(p)hµ(p) is a function of p2 only. For the standard one-link prop-
agator of the staggered fermion action this requirement for a rotational invariant
propagator is violated at O(p4). Expanding D(0)(p), i.e. the trigonometric functions
appearing in hµ(p) (see appendix A.1), in orders of p a further constraint to the co-

efficients c(0)
i,j can be determined such that the free propagator is rotational invariant

up to order p4, for details see appendix A.1. The constraint is

c(0)
1,0 + 27 c(0)

3,0 + 6 c(0)
1,2 = 24 c(0)

1,2 . (2.7)

Two simple choices which eliminate the bended or straight three link terms in 2.1,

5

Rotational symmetry at order p4 : 

Normalization: 
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Figure 2: Dispersion relation E = E(p⃗) with p⃗ = (p/
√

2, p/
√

2, 0) for the standard
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which we will call the p4-action.
Since for the Naik-action the O(p4) terms are completely eliminated one gets even
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B1 = B2

Orginos et al, PRD60 (1999) 054503  

19 



Why improved actions ? 
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Mass splitting of pseudo-scalar mesons  

Only one out of 16 PS mesons has zero mass in the chiral limit, the quadratic mass 
splitting is the measure of flavor symmetry breaking 

asqtad  HISQ 

PS meson splittings in HISQ calculations are reduced by factor ~ 2.5 compared to asqtad 
at the same lattice spacing and are even smaller than for stout action => discretizations effects 
 for Nτ=8 HISQ calculations are similar to those in Nτ=12  asqtad calculations 

21 



Glossary of improved staggered actions  

p4, asqtad, HISQ, stout 

p4 = std. staggered Dslash with 3-step (fat3) link +p4 term 
asqtad =  std. staggered Dslash with 7-step (fat7) link + Naik term 
HISQ = std. staggered Dslash with re-unitarized doubly smeared 7-step (fat7) link 
 stout = std. staggered Dslash with re-unitarized doubly smeared 3-step (fat7) link 
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Integral method: bulk thermodynamics  in SU(3) gauge theory 

In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives 
 

computational cost go as           because of the vacuum subtraction  

Boyd et al., Nucl. Phys. B496 (1996) 167  
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large cutoff effects ! 

the free gas limit overestimates cutoff effects 

Boyd et al., Nucl. Phys. B496 (1996) 167  

Wilson gauge action          discretization errors =>               corrections  
to the pressure  24 



Boyd et al., Nucl. Phys. B496 (1996) 167 
Wilson gauge action 
continuum extrapolation  

Karsch et al, EPJ C 6 (99) 133 
Luescher-Weisz gauge action: 
large reduction of cutoff effects 
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